Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Amazon cover image
Image from Amazon.com

Quantum inspired meta-heuristics for image analysis

By: Contributor(s): Language: English Publication details: John Wiley 2019 New JerseyDescription: xvi, 358pISBN:
  • 9781119488750
Subject(s): DDC classification:
  • 006.42015181 D53q
Summary: Introduces quantum inspired techniques for image analysis for pure and true gray scale/color images in a single/multi-objective environment This book will entice readers to design efficient meta-heuristics for image analysis in the quantum domain. It introduces them to the essence of quantum computing paradigm, its features, and properties, and elaborates on the fundamentals of different meta-heuristics and their application to image analysis. As a result, it will pave the way for designing and developing quantum computing inspired meta-heuristics to be applied to image analysis. Quantum Inspired Meta-heuristics for Image Analysis begins with a brief summary on image segmentation, quantum computing, and optimization. It also highlights a few relevant applications of the quantum based computing algorithms, meta-heuristics approach, and several thresholding algorithms in vogue. Next, it discusses a review of image analysis before moving on to an overview of six popular meta-heuristics and their algorithms and pseudo-codes. Subsequent chapters look at quantum inspired meta-heuristics for bi-level and gray scale multi-level image thresholding; quantum behaved meta-heuristics for true color multi-level image thresholding; and quantum inspired multi-objective algorithms for gray scale multi-level image thresholding. Each chapter concludes with a summary and sample questions. Provides in-depth analysis of quantum mechanical principles Offers comprehensive review of image analysis Analyzes different state-of-the-art image thresholding approaches Detailed current, popular standard meta-heuristics in use today Guides readers step by step in the build-up of quantum inspired meta-heuristics Includes a plethora of real life case studies and applications Features statistical test analysis of the performances of the quantum inspired meta-heuristics vis-à-vis their conventional counterparts Quantum Inspired Meta-heuristics for Image Analysis is an excellent source of information for anyone working with or learning quantum inspired meta-heuristics for image analysis.
List(s) this item appears in: New arrival November 4 to 10, 2019
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Books Books PK Kelkar Library, IIT Kanpur General Stacks 006.42015181 D53q (Browse shelf(Opens below)) Available A184941
Total holds: 0

Introduces quantum inspired techniques for image analysis for pure and true gray scale/color images in a single/multi-objective environment

This book will entice readers to design efficient meta-heuristics for image analysis in the quantum domain. It introduces them to the essence of quantum computing paradigm, its features, and properties, and elaborates on the fundamentals of different meta-heuristics and their application to image analysis. As a result, it will pave the way for designing and developing quantum computing inspired meta-heuristics to be applied to image analysis.

Quantum Inspired Meta-heuristics for Image Analysis begins with a brief summary on image segmentation, quantum computing, and optimization. It also highlights a few relevant applications of the quantum based computing algorithms, meta-heuristics approach, and several thresholding algorithms in vogue. Next, it discusses a review of image analysis before moving on to an overview of six popular meta-heuristics and their algorithms and pseudo-codes. Subsequent chapters look at quantum inspired meta-heuristics for bi-level and gray scale multi-level image thresholding; quantum behaved meta-heuristics for true color multi-level image thresholding; and quantum inspired multi-objective algorithms for gray scale multi-level image thresholding. Each chapter concludes with a summary and sample questions.
Provides in-depth analysis of quantum mechanical principles
Offers comprehensive review of image analysis
Analyzes different state-of-the-art image thresholding approaches
Detailed current, popular standard meta-heuristics in use today
Guides readers step by step in the build-up of quantum inspired meta-heuristics
Includes a plethora of real life case studies and applications
Features statistical test analysis of the performances of the quantum inspired meta-heuristics vis-à-vis their conventional counterparts
Quantum Inspired Meta-heuristics for Image Analysis is an excellent source of information for anyone working with or learning quantum inspired meta-heuristics for image analysis.

There are no comments on this title.

to post a comment.

Powered by Koha