Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Amazon cover image
Image from Amazon.com

Spatial analysis methods and practice : describe-explore-explain through GIS

By: Language: English Publication details: Cambridge University Press 2020 CambridgeDescription: xv, 518pISBN:
  • 9781108712934
Subject(s): DDC classification:
  • 910.285 G863s
Summary: This is an introductory textbook on spatial analysis and spatial statistics through GIS. Each chapter presents methods and metrics, explains how to interpret results, and provides worked examples. Topics include: describing and mapping data through exploratory spatial data analysis; analyzing geographic distributions and point patterns; spatial autocorrelation; spatial clustering; geographically weighted regression and OLS regression; and spatial econometrics. The worked examples link theory to practice through a single real-world case study, with software and illustrated guidance. Exercises are solved twice: first through ArcGIS, and then GeoDa. Through a simple methodological framework the book describes the dataset, explores spatial relations and associations, and builds models. Results are critically interpreted, and the advantages and pitfalls of using various spatial analysis methods are discussed. This is a valuable resource for graduate students and researchers analyzing geospatial data through a spatial analysis lens, including those using GIS in the environmental sciences, geography, and social sciences.
List(s) this item appears in: New arrival Dec.13 to 19, 2021
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Books Books PK Kelkar Library, IIT Kanpur General Stacks 910.285 G863s (Browse shelf(Opens below)) Available A185453
Total holds: 0

With solved examples in ArcGIS, GeoDa and GeoDa Space

This is an introductory textbook on spatial analysis and spatial statistics through GIS. Each chapter presents methods and metrics, explains how to interpret results, and provides worked examples. Topics include: describing and mapping data through exploratory spatial data analysis; analyzing geographic distributions and point patterns; spatial autocorrelation; spatial clustering; geographically weighted regression and OLS regression; and spatial econometrics. The worked examples link theory to practice through a single real-world case study, with software and illustrated guidance. Exercises are solved twice: first through ArcGIS, and then GeoDa. Through a simple methodological framework the book describes the dataset, explores spatial relations and associations, and builds models. Results are critically interpreted, and the advantages and pitfalls of using various spatial analysis methods are discussed. This is a valuable resource for graduate students and researchers analyzing geospatial data through a spatial analysis lens, including those using GIS in the environmental sciences, geography, and social sciences.

There are no comments on this title.

to post a comment.

Powered by Koha