Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Amazon cover image
Image from Amazon.com

Statistical rethinking [2nd ed.] : a Bayesian course with examples in R and Stan

By: Language: English Series: Texts in statistical science series | / edited by Joseph K. Blitzstein ...[et al.]Publication details: CRC Press 2020 Boca RatonEdition: 2nd edDescription: xvii, 593pISBN:
  • 9780367139919
Subject(s): DDC classification:
  • 519.542 M154s2
Summary: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work. The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding. The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses. Features Integrates working code into the main text Illustrates concepts through worked data analysis examples Emphasizes understanding assumptions and how assumptions are reflected in code Offers more detailed explanations of the mathematics in optional sections Presents examples of using the dagitty R package to analyze causal graphs Provides the rethinking R package on the author's website and on GitHub
List(s) this item appears in: New arrival January 03 to 09, 2022
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Books Books PK Kelkar Library, IIT Kanpur General Stacks 519.542 M154s2 (Browse shelf(Opens below)) Checked out to ADARSH SINGH (S2120326100) 12/07/2025 A185504
Total holds: 0

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.

The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.

The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.

Features

Integrates working code into the main text
Illustrates concepts through worked data analysis examples
Emphasizes understanding assumptions and how assumptions are reflected in code
Offers more detailed explanations of the mathematics in optional sections
Presents examples of using the dagitty R package to analyze causal graphs
Provides the rethinking R package on the author's website and on GitHub

There are no comments on this title.

to post a comment.

Powered by Koha