TY - GEN AU - Beck, Amir TI - First-order methods in optimization T2 - / edited by Katya Scheinberg; no.25 SN - 9781611974980 U1 - 519.6 PY - 2017/// CY - Philadelphia PB - SIAM KW - Mathematical optimization KW - First-order logic N2 - The primary goal of this book is to provide a self-contained, comprehensive study of the main first-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods ER -