000 01919 a2200217 4500
005 20180122125702.0
008 180118b xxu||||| |||| 00| 0 eng d
020 _a9788132228417
040 _cIIT Kanpur
041 _aeng
082 _a514.2
_bAd42b
100 _aAdhikari, Mahima Ranjan
245 _aBasic algebraic topology and its applications
_cMahima Ranjan Adhikari
260 _bSpringer
_c2016
_aNew Delhi
300 _axxix, 615p
520 _aThis book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. The book studies a variety of maps, which are continuous functions between spaces. It also reveals the importance of algebraic topology in contemporary mathematics, theoretical physics, computer science, chemistry, economics, and the biological and medical sciences, and encourages students to engage in further study.
650 _aAlgebraic topology
650 _aTopological groups
650 _aGroup theory
942 _cBK
999 _c558376
_d558376