000 02123 a2200205 4500
020 _a9783319786186
040 _cIIT Kanpur
041 _aeng
082 _a530.15
_bSi76c2
100 _aSira, Simon
245 _aComputational methods in physics
_bcompendium for students
_cSirca Simon and Martin Horvat
250 _a2nd ed.
260 _bSpringer
_c2018
_aBerlin
300 _axxiv, 880p
440 _aGraduate texts in physics / edited by Kurt H. Becker
520 _aThis book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools. The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives
650 _aMathematical physics
700 _aHorvat, Martin
942 _cBK
999 _c559628
_d559628