000 | 01561 a2200277 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20220208153317.0 | ||
008 | 220204b xxu||||| |||| 00| 0 eng d | ||
020 | _a9781461267362 | ||
040 | _cIIT Kanpur | ||
041 | _aeng | ||
082 |
_a512.2 _bAd18l |
||
100 | _aAdams, Jeffrey | ||
245 |
_aThe Langlands classification and irreducible characters for real reductive groups _cJeffrey Adams, Dan Barbasch and David A. Vogan |
||
260 |
_bSpringer _c1992 _aNew York |
||
300 | _axii, 318p | ||
440 | _aProgess in mathematics | ||
490 | _a/ edited by J. Oesterle and A. Weinstein ; v.104 | ||
505 | _a | ||
520 | _aThis monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms. | ||
650 | _aRepresentations of groups | ||
650 | _aGeometry, Algebraic | ||
700 | _aBarbasch, Dan | ||
700 | _aVogan, David A. | ||
942 | _cBK | ||
999 |
_c565291 _d565291 |