000 01810nam a2200229 4500
003 OSt
020 _a9789393330239
040 _cIIT Kanpur
041 _aeng
082 _a515.7
_bT63p
100 _aTorchinsky, Alberto
245 _aProblems in real and functional analysis [Indian edition]
_cAlberto Torchinsky
260 _aProvidence, Rhonde Island
_bAmerican Mathematical Society
260 _aHyderabad
_bUniversity Press
_c2015
300 _ax, 467p
440 _aGraduate Studies in Mathematics [GSM]; no. 166
520 _aIt is generally believed that solving problems is the most important part of the learning process in mathematics because it forces students to truly understand the definitions, comb through the theorems and proofs, and think at length about the mathematics. The purpose of this book is to complement the existing literature in introductory real and functional analysis at the graduate level with a variety of conceptual problems (1,457 in total), ranging from easily accessible to thought provoking, mixing the practical and the theoretical aspects of the subject. Problems are grouped into ten chapters covering the main topics usually taught in courses on real and functional analysis. Each of these chapters opens with a brief reader’s guide stating the needed definitions and basic results in the area and closes with a short description of the problems. The Problem chapters are accompanied by Solution chapters, which include solutions to two-thirds of the problems. Students can expect the solutions to be written in a direct language that they can understand; usually the most “natural” rather than the most elegant solution is presented.
650 _aMathematical analysis
650 _aSet theory
650 _aFunctional analysis
942 _cBK
999 _c565678
_d565678